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The problem of the existence of linear integrals of the equation of motion of a mechanical system, subjected to non-linear 
constraints, is considered. Existing results for holonomic systems, and also for non-holonomic systems with linear constraints, 
are extended to systems with non-linear non-holonomic constraints. Examples are given. �9 2006 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a mechanical system, whose position is defined by the generalized coordinates qt., . . . ,  qn; the 
kinetic energy is given by the expression T = affdtJ/2, while the potential energy H = H(q'). Here and 
henceforth summation is carried out over repeated indices. The indices take the following values: i, j, 
k, s = 1 . . . . .  n; t~, [3 = 1 . . . . .  m; v, P = 1 + m . . . . .  m + l = n. The system is subject to non-linear non- 
holonomic constraints of the form 

v i . i  
f ( q , q )  = 0 

We will write the equations of this system in the Hamiltonian form 

(1.1) 

qj OH OH + ~,v0f v (1.2) 
=Tpp/  P J =  ' 

0q j 0q j 

Herepj  = OT/O~I j, H is Hamilton's function, which has the form H = bijpi/2 + F I ,  b 0 are the elements 
of the matrix inverse to II aij II and ~,v are multipliers of the constraints. 

We will assume that the equations of motion (1.2) have an integral that is linear with respect to the 
momenta: 

(p = EJpj = cons t  (1.3) 

The necessary and sufficient conditions for linear integrals of the equations of motion with linear 
non-holonomic constraints of the form C~dl j = 0 to exist were obtained in [1, 2]: the function (1.3) is 
the integral of the equations of motion if and only if (a) c y  = 0 and (b) (1.3) is the integral of the 
equations qJ = OH/Opj,[~j = --OH/Oq j. However, it was shown m [3] that in [1, 2] there is in fact no analysis 
of the necessity of condition (a) and (b), and it was shown by examples that conditions (a) and (b) are 
not necessary, i.e. a case exists when c~e J ~ 0, but the system has a linear integral. Using the generalized 
idea of a "cyclic" coordinate, a theorem on linear integrals was proved in [3, 4], similar to the theorem 
for holonomic mechanical systems [5-7]. 

tPrikl. Mat. Mekh. Vol. 69, No. 6, pp. 929-934, 2005. 
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2. C O N D I T I O N S  F O R  L I N E A R  I N T E G R A L S  TO EXIST 

Using methods described previously in [1-4], we will extend these results to mechanical systems with 
non-linear non-holonomic constraints [1.1]. 

A coordinate qn, for which 

0H = 0 ' ~ 0fv = 0 
Oq" vOLIn 

is usually called a cyclic coordinate. Note a special case of this definition 

- -  = o f m + l  o f m + t  
OH O, ~ = 0 . . . . .  - -  
Oq" ~1~1 n 0(1 n 

= 0  

Constraint (1.1) can be rewritten in the form 

v i 
F ( q ,  Pi) = 0 (2.1) 

Further, we will mean by an expression in square brackets and expression in which i momenta have 
been eliminated using constraint (2.1). 

It is obvious that the expression 

Y = kv Fv (2.2) 

where kv are arbitrary functions of the coordinates, is a linear integral of Eqs (1.2), if the initial conditions 
are chosen in accordance with the constraint equations. We will call the coordinate q" "cyclic" if 

( _ ) . m . ,  . . . ,  
OH = 0 in particular, 0 H = 0 ,  = 0 . . . . .  = 0 

0q n 0t~ n 0q n 

We have the following assertion: only those systems possess integrals which are linear in the momenta 
which either have "cyclic" coordinates or can be converted into systems with "cyclic" coordinates by 
means of an extended point transformation (compare with the similar assertion in [4]). 

In fact, the expression 

W = ~-kv Fv = ~ P j  

where kv is the solution of the algebraic equations 

k OFVO: = 
v Op i ocIi oLIj 

is an integral of Eqs (1.2) on the set of real trajectories of the system, where 

Of..----PrlJ = 0 (2.3) 
0q j 

Consider the system of equations 

0q 1 0q" (2.4) 
O~' Orl" 

We will assume that at least one of the functions rl 1, . . . ,  11 n is non-zero, for example 1"11 ~ 0. Suppose 
the system of solution of Eqs (2.4) consists of n - 1 integrals Qr(ql, . . . ,  q,) = const (r = 1 . . . . .  n - 1) 
and suppose the function Q" is defined by the equation 

Qn = [ d q  ! 
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where, in the expression for 111 the coordinates q2 . . . . .  qn must be expressed in terms of ql, QI . . . .  , 
Q~- 1. If the variables are changed in such a way that only the quantity Qn is changed, while the quantities 
Q1 . . . . .  Qn-1 remain constant, then, by virtue of the previous equation, we obtain 

dq ~ dq" _ dQn (2.5) 
I n 

n n 

If the quantities Q1, . . . ,  Qn are considered as new variables, in terms of which one can express the 
previous variables ql . . . . .  qn, then 

3q' = 11' OQ" 

We will now consider an extended point transformation from the variables ql . . . . .  q~ to the variables 
Q1 . . . . .  Qn, so that the new momenta P1 . . . . .  Pn are defined by the equations 

~qS 
Pk = P s ' ~  

(see [5, 6]). As a result of this transformation, Eqs (1.2) take the following form [2] 

Q) ~H ~ffl v v ~g fv  ~qi 
=~-~j,  P j = - . ~ j + ~ , v a j ;  aj = 3gl-----7bQ----- ) 

where/-7 is the Hamilton function of the system, represented in the new variables. 
The integral ~ = const is converted into the integral Pn = const. Since [Pn] = 0 and A m + 1 = 0, , . . ,  

An ~ = 0 (see relations (2.3) and (2.5)), we have [3H/3Q"] = 0. This means that the coordinate O n 
is "cyclic". 

3. E X A M P L E S  

Example 1. Suppose two heavy point masses M1 and M2 of unit mass, connected by a rod of fixed length 
2l, move in a vertical plane in such a way that their velocities Vl and v2 are parallel. This constraint can 
be achieved in practice by attaching a knife edge at the point M perpendicular to the direction MIM 2 
[8] (see Fig. 1). 

Suppose xl,Yl and x2,Y2 are the coordinates of the points M1 and M2. The equations of the constraints 
of the system can be written in the form 

= _ ) 2  _ f 4  f3  (X 2 Xl)2+(y2--Yl (2l)  2 ---- O, ---- Xl~)2--.~2Pl ---- 0 

M2(x2, 1)y2)~v'~ 

I ~ l 

11) l 

(xt, YO 

0 x 

Fig. 1 
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where the second equation expresses the condition that v 1 and v 2 must be parallel and represents a 
non-linear non-holonomic constraint. The Lagrange function of the system and the Hamilton function 
have the form 

l .2 2 2 .2 
L = ~(x 1 +))l +-1~2 +Y2)-g(Yl +Y2), 

We will define new variables by the following relations 

I 3 2 4 
Q1 _ q + q Q2 = q + q. Q3 J(q3 ql)2 + (q4 q2)2, 

2 ' 2 ' = - - 

I 2 3 4 
q =x l ,  q =Yl, q =xz, q =Y2 

1 2 2 2 2 
H = ~(Pl  + P2 + P3 + P4) + g(YJ + Y2) (3.1) 

Q 4  fdql_~ f dq 1. 
q - q  (3.2) 

where q4 and q2 in the last integral must be expressed in terms ofq 1, Q1, Q2 and Q3. The formulae which 
express the old variables in terms of the new ones have the form 

3 
Q3 _~sinQ 4 ql,3 = Ql : t :_~_cosQ4 ' q2,4 = QZ:F 

The meaning of the new variables is clear: Q1 and Q2 are the coordinates x and y of the centre of the 
rod, 03 is a constant quantity, equal to the length of the rod and an  is the angle of inclination of the 
rod to the x axis. 

The equations of motion allow of the following integral, which is linear and homogeneous in the 
momenta, 

( X 2  -- XI ) ( )~2 -- ) ) l )  -- (Y2 -- Yl  ) ( X 2  --  "l~l ) = c o n s t  ( 3 . 3 )  

The Lagrange function and the equations of the constraints of the converted system, and also the 
Hamilton function can be written in the form 

Since 

s = ( o l )  2 + (O2) 2 + (Q3]2)(Q4)2- 2gQ 2 

f3 = Q3 = o, f4 = Q,_Q2tgQ4 = 0 

1 _ 2  1 _ 2  1 2 
= ~/"1 + ~/"2 + (Q3)2P4-- + 2gQ 2 

3 4 ~n/bQ 4 = 0, A 4 = 0, A 4 = 0 (3.4) 

4 1 32  4 the coordinate Q is cyclic, and hence we have the integral P4 = 7 ( Q  ) Q = const, i.e. 9 = const. 
Example 2. A system consists of two point masses Ma and M2 o f  unit mass, connected by a weightless 

structure (a "fork"), as shown in Fig. 2. There are two knife edges at the points M1 and M2, one of which 
is parallel and the other perpendicular to the section MIM 2. The system is in a potential force field, 
the potential energy H of which depends only on the distance between the points M1 and ME. For 
example, these points can be connected by an elastic spring [8]. 

The equations of the constraints of the system can be written in the form 

f3  = . f l cosq)+Yls in tp  = O, f 4  = 3~l.l~2+Yly 2 _- 0 

where the second equation expresses the condition that the velocities vl and v2 are orthogonal and 
represents a non-linear non-holonomic constraint. 

The Lagrange and Hamilton functions have a form which differs from (3.1) solely in that the function 
g(Yl + Y2) is replaced by I](Xl, Yl, X2, Y2). 

We defined the new variables by relations similar to (3.2), with the exception that now Q1 = q3 and 
Q2 = q4. The formulae that express the old variables in terms of the new ones have the form 

Q1 2 Q 2  _ 3 4 Q2 q = _Q3cosQ4 ' q = Q3sinQ4 ' q = QI, q = 



836 D.N. Zekovich 

~112 
M2(X2, Y2) 

MI(Xl, Yt) 

0 x 

Fig. 2 

The meaning of the new variables is clear: Q1 and Q2 are the coordinates of the point M2, Q3 is the 
length of the section MtM2, and Q4 is the angle of inclination of MIM2 to the x axis. 

The equations of motion of the system allow of an integral of the form (3.3) that is linear and 
homogeneous in the momenta. 

The Lagrange function and the equations of the constraints of the transformed system, and also 
Hamilton's function have the form 

f 3  �9 I 4 = a c o s a  + Q 2 s i n a 4 - Q 3  = 0, f 4  = ( (21)2+(Q2)2_(Q3)2 = 0 

Since conditions (3.4) are satisfied, the coordinate Q4 is cyclic, and hence we have the cyclic integral 
P4 = (Q3)204 = const, i.e. ~2(0 = const. 

This research was supported by the Ministry of Science and Technology of Serbia (1616) with the 
participation of the Mathematical Institute SANU. 
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